
Week 04
Sandbox/Jail Escapes

Pete



_sigpwny{_ jailbreak_ }_



● Sandbox = “isolated environment”
○ Antivirus tests binaries in sandboxed filesystem
○ PrairieLearn / HackerRank / LeetCode

■ Python shouldn’t be able to modify results/read test cases
○ REPL.IT / Other online code sandboxes

■ Need protections to run untrusted user code
■ What if the user wants to remove all files? What if they run an 

infinite loop?
○ CTF jails - allow arbitrary code with limitations

■ A badly implemented sandbox with some sort of restrictions
● The goal is to escape the sandbox!

Big Idea



Example

Seems fine, right…?



The Problem



● Type 1: Source limitation
○ Only allow certain characters in submission
○ Source code meets some criteria
○ Solution: Get clever with niche language features

● Type 2: Environment limitation
○ Execution environment removes functions/variables

■ Can’t call open() or read()
○ Solution: Get references to functions another way

● Type 3: Bytecode Limitations
○ Certain python language features are removed
○ Solution: Abuse python internals and niche operations

CTF Jails
NO os.system ALLOWED

Cannot find module ‘os’

WTF is a string



Trivia
Two ways to execute python: “eval” and “exec”
● eval is used to evaluate a single Python expression

○ Can still be bypassed
● Exec is used to execute a Python program

○ Has control flow

Get around word blacklists by combining strings!

Multiple ways to read files

Internal python import hook
Can use with eval!



import os; os.popen("cat /flag.txt").read()

print(open("/flag.txt").read())

Source Restricted CTF Jails

Non working exploits :(

How can we get around these restrictions??



import os; os.system('cat /flag.txt')

Source Restricted CTF Jails



exec(user_input, {'globals': globals(), '__builtins__': {}}, {'print':print})

Offshift CTF 2021 pyjail

Environment Limited CTF Jails

● Need to get a reference to __import__
● We are given:

○ The global variables
○ The print function
○ __builtins__ is empty!



exec(user_input, {'globals': globals(), '__builtins__': {}}, {'print':print})

Offshift CTF 2021 pyjail

print(globals['__builtins__'].__import__('os').popen('cat /flag.txt').read())

Environment Limited CTF Jails



Bytecode Limitations

When Python is executed, it is first compiled to “Python Bytecode”
● Essentially, a stack-based assembly language

Restrictions can be placed on this “Python Bytecode” at a compiler level
● These challenges are typically quite advanced, and have very little real-world use

Python
bytecode



Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Restrictions:
● Cannot make or call functions
● Input length <= 1337
● No control flow
● No double underscores

○ Means we can’t access __import__ or any 
python internal properties

● Only builtin is the ‘gift function’

Given:
● Function that lets us set one attribute once



Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Looking for obscure language features… look at python 
OPCODES (documented here)

Observation:
Methods aren’t blocked

https://docs.python.org/3.9/library/dis.html#opcode-collections


Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Observation: could use the gift function to set its own code
● Not quite, can’t call functions :/



Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Observation: banned instructions don’t exit

We can massage the stack using a tuple to access the 
underlying code of a lambda function!



Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Combine these pieces of information…

Shout out Alex / @gsitica for the solve at dice!



Looking Forward: PrairieLearn
Can we pass any python test case?

● PrairieLearn is open source
○ https://github.com/PrairieLearn/PrairieLearn

● PrairieLearn executes your python in a docker container
○ How does it verify the python submission was correct?
○ How does it sandbox python code from the test code?
○ Can we tamper with results?

● Do NOT try exploits on school instances or you will face disciplinary/legal action. Try 
exploits on locally hosted instances only.

● If you find something, submit an issue or create a pull request! Let’s make PrairieLearn 
more secure!



Next Meetings

Sunday: IOT Security (Paper Presentation)
- Proper access control and state management for IOT software
- Will cover attacks etc

Next Thursday: Windows Environments
- Important aspects of Windows System internals (and Enterprise 

environments)
- Vulnerabilities


