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PWN II
Kevin



Announcements

- HackTheBox University starts tomorrow!

- Sunday - grad talk

- Next Thursday is our last meeting!



ctf.sigpwny.com

sigpwny{%n}



Review: what is pwn?

- More descriptive term: binary exploitation
- Exploits that abuse the mechanisms behind how compiled 

code is executed
- Dealing with what the CPU actually sees and executes on or near the 

hardware level
- Most modern weaponized/valuable exploits fall under this 

category
- This is real stuff!!

- Corollary: this is hard stuff. Ask for help, or if you don’t need help, 
help your neighbors :)



Memory Overview
- Programs are just a bunch of numbers 

ranging from 0 to 255 (bytes)
- Each number is stored at an "address" in 

the range 0x0-0xFFFFFFFFFFFFFFFF
- Think of it as a massive array/list

- Bytes in a program serves one of two 
purposes
- Instructions: tells the processor what to do
- Data: has some special meaning, used by the 

instructions
- Examples: part of a larger number, a letter, a 

memory address
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Memory Region
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(instructions)
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data)
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stack
(runtime data)

Bottom of memory 
(0x0000000000000000)

Top of memory 
(0xFFFFFFFFFFFFFFFF)
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Exploit Primitives

• “Building blocks” of an exploit
• Common primitives

• Read
• Arbitrary read (read from anywhere)
• Uncontrolled read (read starting from some 

address)
• Write

• Arbitrary write (write anything anywhere)
• Uncontrolled write (write something 

anywhere)
• Also uncontrolled write (write anything 

somewhere)
• Leak

• Usually done with a read, but not always
• Necessary because addresses are often 

randomized

Vulnerability 1 Vulnerability 2

Out-of-bounds 
read

Address leak

Arbitrary write

Code Execution



Dangerous function of the day:
printf()
• Formatted print function

• printf("Hello %s!", "Kevin"); // prints ‘Hello Kevin!’
• printf("My favorite number is %d", 1337);

• ‘My favorite number is 1337’
• printf("%s, my favorite number is %d", "Kevin", 1337);

• ‘Kevin, my favorite number is 1337’
• %s and %d are format specifiers

• Tells the function to read the next argument as a certain data 
type
• %s -> string, %d -> decimal integer, %p -> pointer, etc.

• What if it’s just used as a print function?
• printf(name) // name is controlled by the user
• If name is ‘Kevin’, prints ‘Kevin’
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Primitive: Stack Read

• %p format specifier
• printf("%p", 0x13371337);

• Prints ‘0x13371337’
• printf("%p");



Review: The Stack
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printf(“%p”, b);
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Primitive: Stack Read

• %p format specifier
• printf("%p", 0x13371337);

• Prints ‘0x13371337’
• printf("%p");

• Whatever is next on the stack!
• Send a lot of %p’s and you’ll dump the stack 8 bytes at a time
• Figure out which data is the thing you want :)

• If the string ‘sigpwny{’ were on the stack, you might see:
• 0x7b796e7770676973
• These are hexadecimal ASCII values, online converters may be useful

• Note:
• %p interprets data as little endian



Primitive: Arbitrary Read

• %s format specifier
• printf("%s", "hello");

• Prints ‘hello’
• printf("%s", 0x12345678);

• Prints the string starting from memory address 0x12345678
• printf("%3$s", 0x100, 0x200, 0x300);

• Prints the string starting from memory address 0x300 (3rd argument)



Primitive: Arbitrary Read

• char name[64]; // stored on stack
• fgets(name, 64, stdin); // ‘%n$p’ <- n is a number
• printf(name);
• For some n, the %n$p will print name!

• E.g. 0x70243525
• Key idea:

• Format specifiers read from the stack, and name is on the stack
• Format specifiers can reference our input!

• If name is ‘%n$s’ (for correct n)
• Prints the string starting from a memory address in our input



Primitive: Arbitrary Read

• char name[64]; // stored on stack
• fgets(name, 64, stdin);
• printf(name);
• If name is ‘%n$s____\x11\x22\33\x44\x55\x66\x77\x88’ (for correct n)

• Prints the string starting from memory address 
0x8877665544332211

• We can read from memory addresses contained in our input
• Note: why the underscores?

• Each argument is 8 bytes: len(‘%n$s____’) == 8, so the address is 
aligned correctly. Pad to a multiple of 8 bytes before the address.

• Testing strategy:
• Develop with %n$p instead of %n$s and verify the correct address 

gets printed
• Then switching to %s will make it read from the correct address!



Primitive: Arbitrary Write

• %n format specifier
• Writes the number of bytes previously printed to the given address
• printf("%n", &number);

• number = 0;
• printf("AAAA%n", &number);

• number = 4;
• printf("%500p%n", 1, &number);

• number = 500;
• ‘%500p’ means format as pointer, padding to 500 characters

• In this case, ‘0x1’ preceded by 497 spaces
• Easy way to print a given number of bytes



Primitive: Arbitrary Write

• char name[64]; // stored on stack
• fgets(name, 64, stdin); // ‘%n$p’ <- n is a number
• printf(name);
• If name is ‘%500p%n$n______\x11\x22\33\x44\x55\x66\x77\x88’ (for 

correct n)
• Writes 500 to memory address 0x8877665544332211

• Testing strategy:
• Same technique as arbitrary read:

• Develop with %n$p instead of %n$n and verify the correct address is printed
• Then switching to %n will make it write to the correct address!

• Note: by default, %n writes 4 bytes
• To write fewer bytes, add h before n to write half the number

• %hn writes 2 bytes, %hhn writes 1 byte
• This is important for the challenge!



PIE and Leaks

• PIE stands for Position Independent Executable
• Mitigation to make exploit development harder
• The binary is loaded into memory at a random address

• Starts with 0x55 or 0x56, ends with 3 0s (i.e. 0x55xxxxxxx000)
• You will see a PIE address when you read from the stack!

• Applicable challenges: Leak And Read, Grander Finale
• The addresses output by objdump will be offsets from the 

random base address
• Find the offset of the original address by grepping for the last 3 digits
• Subtract that from the leak, and add the offset of the thing you want

• These challenges will be hard
• Ask questions, Google things you don’t understand, it will take a 

while to grasp these concepts!



Global Offset Table and Procedure 
Linkage Table
• Functions such as gets, printf, and puts are not compiled into 

the binary
• They are linked in another binary called a shared library
• The PLT contains stub functions for each linked function

• These stubs call function addresses stored inside the GOT
• To get code execution, overwrite a GOT pointer so that the 

PLT will call the wrong function!
• Where to write? Run readelf -r <binary>

• These challenges will be hard
• Ask questions, Google things you don’t understand, it will take a 

while to grasp these concepts!



Delivering Your Exploit



Quirk: Little endianness

- Numbers are little endian in x86-64
- The least significant ("littlest") byte is stored first

- 0x1122334455667788 is stored in memory as 
88 77 66 55 44 33 22 11
- 88 is the least significant because it means 0x88 x 2560 = 0x88
- 11 is the most significant because it means 0x11 x 2567 = massive 

number



Getting function and global 
variable addresses
With objdump:

Function: > objdump -d chal | grep "<main>:"

00000000004011ce <main>:

Variable: > objdump -d chal | grep "<flag>"
  401358:       48 8d 3d 61 2d 00 00    lea    0x2d61(%rip),%rdi        # 4040c0 <flag>

Or with GDB:

> gdb ./chal

> i addr main

Symbol "main" is at 0x4011ce in a file compiled without debugging.



echo

- "echoes" your input
- Enable escape codes: echo -e ...

- \xNN -> 0xNN
- Can only be used if your exploit is the same every 

time

> echo -e '\x01\x02\x03\x04' | ./chal

> echo -e '\x01\x02\x03\x04' | nc ...



Pwntools
from pwn import *

# Connect to Stack 0 server with netcat
conn = remote('chal.sigpwny.com', 1351)

# Read first line
print(conn.recvline())

# Write exploit
conn.sendline('A' * 8)

# Interactive (let user take over)
conn.interactive()

> python3 -m pip install pwntools



Pwntools
from pwn import *
conn = remote(...)

# Address of win function
WIN_ADDR = 0x0804aabb

# Overflow stack
exploit = b'A' * 8

# Push win address after overflow
# p64(number) is a pwntools function that converts the 
# number WIN_ADDR to a proper little-endian address
exploit += p64(WIN_ADDR)

# Send exploit
conn.sendline(exploit)
conn.interactive()



Next Meetings

2022-12-02 - Tomorrow
- HackTheBox University CTF
2022-12-04 - This Sunday
- "Human Perceptions and Roles Under Emerging Machine 

Learning Threats" from grad student Jaron Mink
- Fourth iteration of our research talks with SPRI!
2022-12-08 - Next Thursday
- Multiparty Computation with Michael
- Final meeting of the semester!



Challenges!

- Meeting flag:
- sigpwny{%n}

- Go through the challenge in the PWN II category.
- The last three are hard and require understanding of GOT/PLT and/or 

PIE. They will likely require more time to solve than you have during 
this meeting. Work on them at home, and ask for help in discord :)

- This stuff is confusing, so ask for help
- If you understand it, help the people around you




